

DEEPWATER PIPELINE INSPECTION A TOOLBOX APPROACH

ROSEN empowered by technology

Lauren Guest · PPSA 2023 · Aberdeen · 15/11/23 Collaborating Authors: Michal Sobieski, Hubert Lindner, Abco Enters

The Future of Deepwater Pipelines

Global Deepwater production is expected to increase 60% by 2030, reaching 17 million bbl/day – Wood Mackenzie OGJ Nov. 29, 2022

60%

With increased growth, developments are ultimately getting deeper – increasing the technical and commercial challenges

Maslin, E. (2020) Fully Remote diverless pipeline (MIG) welding equipment. From PRSI Pool. Available at: (Accessed 7th November 2023)

- Complex and costly repairs
- Impracticable dig verification
- High logistics costs
- Remote subsea intervention

- High Pressure
- Elevated Temperatures
- Debris, wax & hydrate management
- High flow
 - Minimized deferment
 - Tie-ins & side flow
- Predominantly internal corrosion

Meechan.G. (2210) Blog What does a Flow Assurance Engineer do? Available at: https://www.crondallenergy.com/post/blog-what-does-a-flow-assurance-engineer-do (Accessed 7th November 2023)

Co-mingled Flow

Subsea launching

Diameter Changes Tie-In Installations

DEEPWATER PIPELINES ASSOCIATED PIGGING CHALLENGES

ACCESS

- Constrained launch and receive facilities
- Subsea operations

OPERATION

- High velocities and side flow
- High Temp and pressures
- Liquid management

PASSAGE

- Large ID changes
- Long sealing tools for wye and tee passage
- Debris removal
- Heavy wall

Deepwater Pipelines – A Toolbox Approach- Lauren Guest- © ROSEN Group · 15th November 2023

SAFE FLEXIBLE PASSAGE

THE CHALLENGE

- Pig design to mitigate the impact on flexible carcass:
 - Tools supported by PU and/or nylon wheels
 - Non-aggressive cleaning tools, composed of plastic cleaning elements only
 - Wheeled magnetizers for MFL technology

DEEPWATER CHALLENGES

- Gas systems
- Heavy Wall Rigid Pipe
- Long pipeline Lengths

CASE STUDY 1 WHEELS OR NO WHEELS?

"IS A WHEELED MAGNETIZER THE BEST SOLUTION?... OR IS IT LIMITING THE INSPECTION POTENTIAL"

	With Wheels	without
Low Friction		
Low Contact forces		
High Magnetisation		
Debris Tolerance		
ID Optimization		
Speed effect tolerant		

Wheel supported brush

Wear-resistant steel brush

CASE STUDY 1 WEAR-RESISTANT STEEL BRUSHES WITH WHEELS

Wear-resistant steel brush with wheels

Low friction

Lower magnetization due to lift-off

Local surface pressure (wheels)

Deepwater Pipelines – A Toolbox Approach- Lauren Guest- © ROSEN Group · 15th November 2023

CASE STUDY 1 WEAR-RESISTANT STEEL BRUSHES

Wear-resistant steel brush

High magnetization

Equally distributed surface pressure

Brush curvature optimized to ID

Deepwater Pipelines – A Toolbox Approach- Lauren Guest- © ROSEN Group · 15th November 2023

CASE STUDY 1 WHEELS OR NO WHEELS?

"IS A WHEELED MAGNETIZER THE BEST SOLUTION?... OR IS IT LIMITING THE INSPECTION POTENTIAL"

	With Wheels	without
Low Friction	\checkmark	
Low Contact forces		\checkmark
High Magnetisation		\checkmark
Debris Tolerance		\checkmark
ID Optimization		\checkmark
Speed effect tolerant		\checkmark

Deepwater Pipelines – A Toolbox Approach Lauren Guest © ROSEN Group · 15th November 2023

Wheel supported brush

Wear-resistant steel brush

CASE STUDY 1 PROVING THE CONCEPT

Dyneema® Pull rope

- 1. Do brushes without wheels damage a flexible?
- 2. Review of MFL Design and calculations
- 3. Optimisation of brushes & tool setup
- 4. Brush manufacture and test setup
- 5. Pull testing
- 6. Results & Review

Deepwater Pipelines – A Toolbox Approach Lauren Guest © ROSEN Group · 15th November 2023

Paint markers

CASE STUDY 1 RESULTS & REVIEW

- 1. The MFL tool without wheels passed through the flexible safely without inducing damage
- 2. The PU only test had the same effect to the paint as the magnetiser
- 3. Testing provides greater flexibility of tool setups and inspection options
- Every pipeline system is different the exact tool setup should be reviewed on a case-by-case to provide the optimum solution

Deepwater Pipelines – A Toolbox Approach- Lauren Guest- © ROSEN Group · 15th November 2023

DEEPWATER PIPELINES ASSOCIATED PIGGING CHALLENGES

Deepwater Pipelines – A Toolbox Approach- Lauren Guest- © ROSEN Group · 15th November 2023

DEEPWATER MULTI-DIAMETER GAS PIPELINE

THE CHALLENGE

- Multi-diameter 16"/22"
- Cleaning and gauging requirement
- Critical Installations: Y-pieces, T-pieces, valves
- Passage through flexibles and flow coating
- High operating pressure
- Heavy Wall Thickness
- Long pipeline Length

Bigger

Picture

DEEPWATER CHALLENGESNo product deferment

• High Gas velocity

Deepwater Pipelines – A Toolbox Approach Lauren Guest © ROSEN Group · 15th November 2023

This document is the property of ROSEN Swiss AG who will safeguard its rights according to the civil and penal provisions of law. No part of this document may be reproduced or disclosed to any other party without the prior permission of ROSEN.

CASE STUDY 2 **CONCEPT & DESIGN**

16"/22" Multi-Diameter Pull unit

- Wide Operating range (340 610 mm)
- Modular design
- Long sealing length for Y passage
- Stabilization of sealing elements
- Integrated battery packs
- high pressure transmitter

Spring loaded brushes •

Nylon brushes for flow coating

Cleaning/Gauge Tool

- Cleaning effect from pull unit
- Combined cleaning and gauging reducing runs

- Compact low-friction design ٠
- High accuracy of detection and sizing of • internal features which is the main integrity concern

This document is the property of ROSEN Swiss AG who will safeguard its rights according to the civil and penal provisions of law. No part of this document may be reproduced or disclosed to any other party without the prior permission of ROSEN.

CASE STUDY 2 TESTING & IMPROVE

- Bypass test under low and high differential pressures
- 6 pump tests
- 30 pull tests in 5 different diameters (16"/18"/20"/22"/24") to verify tool specifications
- Pressure vessel testing

Test Loop

- 51 elements
 - Full ID range, bends
 - T-Pieces
 - Original Y-Piece
 - Stop/start in all features/sections

Deepwater Pipelines – A Toolbox Approach Lauren Guest © ROSEN Group · 15th November 2023

DEEPWATER MULTI-DIAMETER GAS PIPELINE RESULTS & REVIEW

- Substantial cost saving for the client due to early ROSEN involvement at pipeline design phase
- Staged approach to design and testing
- Onerously test tool
- ILI run was successful:
 - Delivered Ontime
 - Quality geometry, metal loss & XYZ data
 - 100% internal coverage
- High repeatability of IEC data to allow for accurate corrosion growth estimates

Deepwater Pipelines – A Toolbox Approach Lauren Guest © ROSEN Group · 15th November 2023

DEEPWATER PIPELINES ASSOCIATED PIGGING CHALLENGES

Deepwater Pipelines – A Toolbox Approach Lauren Guest © ROSEN Group · 15th November 2023

SELF-PROPELLED TETHERED TOOLS

THE CHALLENGE

- Line cannot be looped or is risky to loop due to malfunctioning valves
- Conventional Bi-Di pigging is not possible because flow cannot be reverse

BENEFIT

- Capable to measure geometry, wall thickness, corrosion, cracks
- Utilizes TOFD for girth weld inspection
- Can be used to grind girth welds
- Data recorded in and out in real-time
- Capability in 6" and larger
- Up to 12km inspected previously, longer length possible (up to 24 km)

Precise Data Collection from 10" Pipeline Girth Weld Integrity & Crack-Like Defects

Deepwater Pipelines – A Toolbox Approach Lauren Guest © ROSEN Group 15th November 2023

THANK YOU FOR JOINING THIS PRESENTATION.

